URBANFYE

An Outdoor Localization System for Public Transport

Aviral Shrivastava, Bivas Mitra, Niloy Ganguly, Sandip Chakraborty {Indian Institute of Technology, Kharagpur}

Sujoy Saha, Subrata Nandi {National Institute of Technology, Durgapur}

> - Rohit Verma PhD Student Complex Network Research Group (CNeRG) Indian Institute of Technology, Kharagpur

PROBLEMS OF PUBLIC TRANSPORT IN DEVELOPING COUNTRIES

PROBLEMS OF PUBLIC TRANSPORT IN DEVELOPING COUNTRIES

PROBLEMS OF PUBLIC TRANSPORT IN DEVELOPING COUNTRIES

CNeRG IIT KGP

No Information Boards

OBJECTIVE

- An application which runs on a commuter's mobile phone is a feasible solution
- The app should give the following
 - Current location of the commuter
 - Time that the bus would take to reach the destination

A G.P.S BASED SOLUTION

 Empower the user with a GPS based mobile application which she can use anytime

But!!

Energy Consumed by GPS

WHAT CAN BE DONE?

Use of **mobile sensors** to localize vehicles without using GPS

Landmarks: Specific anomalies on the route which can be detected using the mobile sensors

COLLECT SENSOR DATA

DATABASE AND TRAVERSAL GRAPH

DETECT LANDMARK USING SENSORS

LOCALIZE

ARE VIRTUAL LANDMARKS FEASIBLE?

Latitude

CNeRG IIT KGP

• Only stray hotspots detected

• Unplanned placement of cell towers.

Physical

WHAT ABOUT THE PHYSICAL ONES?

AN ISSUE WITH PHYSICAL LANDMARKS

Volatile Landmarks

May or may not occur on a route.

CNeRG IIT KGP

Bus skips a designated bus-stop

HANDLING VOLATILE LANDMARKS

Confidence of Landmarks: Probability of a bus encountering a landmark given that it has already encountered the previous landmark

WE THUS PRESENT - URBANEYE

Builds Landmark Database

NAVIGATION: LOCALIZATION

NAVIGATION: TRAVEL TIME ESTIMATION

Assuming there are a total of n landmarks between the source and destination and m landmarks have already passed,

$$ETA = \sum_{i=m}^{n-1} p_{ji} * g_{ji}$$

where *j* is the landmark from which *i* was reached

In this example, n = 6 and m = 3

Hence we have,

CNeRG IIT KGP

ETA = (15*0.4) + (6*0.6) + 10*0.6 = 15.6

SYSTEM ARCHITECTURE

IST (UTC+5:30)

Time zone

💶 India

Country

CNeRG IIT KGP

20

89'30' @ 2011 Maph

Country

India

WAR DRIVING

- We collected sensor trails for up and down trips (**60 trails**) over a month's duration.
- Total coverage of the routes was around **75kms**
- Different types of devices were used, for e.g. Google Nexus4, Micromax A092, Samsung Galaxy Tab 3

EVALUATION : DETECTION OF LANDMARKS

Detection Accuracy for a route in Durgapur

Landmark	Actual	Detected (%)	False Positive (%)	FPE* (%)
Turn	32	31 (96.8)	10 (31.2)	0 (0)
Speed Breaker	9	8 (87.5)	3 (37.5)	0 (0)
Bus Stops	42	34 (80.9)	13 (38.2)	2 (4.76)

• Bus Stops have comparatively low detection because of volatility

CNeRG IIT KGP

• Applying PTA guard intervals reduces the false positive cases considerably

*FPE: False positives after elimination by PTA guard intervals

EVALUATION : DETECTION OF LANDMARKS

Accuracy metrics for the 3 cities

City	Turns			Speed Breakers			Bus Stops		
	Р	R	A	Р	R	A	Р	R	A
Durgapur	1	0.94	0.94	1	1	1	0.93	0.83	0.78
Kharagpur	1	1	1	1	0.94	0.94	0.88	0.88	0.78
Kolkata	1	0.97	0.97	1	0.89	0.89	0.94	0.81	0.77

- Almost close to 1 values for Precision, Recall and Accuracy for turns and speed breakers
- Bus stops again have comparatively low values because of volatility

NAVIGATION EVALUATION

CNeRG IIT KGP

- We compare localization accuracy w.r.t **Dejavu**.
- We compared the travel time estimates with that of Google maps.
- Energy consumption comparisons were done against Dejavu and GPS.

Aly, Heba, and Moustafa Youssef. "Dejavu: an accurate energy-efficient outdoor localization system." *Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems*. ACM, 2013.

COMPETING HEURISTIC

Dejavu (Alexandria, Egypt)

EVALUATION: LOCALIZATION ACCURACY

- Dejavu performs very bad for low density landmarks routes
- The average localization error is 50m

Localization Error over a route

EVALUATION : TRAVEL TIME ESTIMATE

CNeRG IIT KGP

- Simulated the bus route for Google Maps
- Google maps doesn't consider wait time at bus stops
- Hence, UrbanEye gives better estimate than Google Maps

Error Percentage is given as;

 $\frac{\text{abs (Actual Time - Estimated Time)}}{\text{Actual Time}} \times 100$

ON-SERVER AND OFF-SERVER URBANEYE

We developed two versions of the application

- On-server : Navigation is carried on server and sensor data is offloaded
- Off-server : Navigation is performed on the device
- We hence evaluate how much overhead does offloading sensor data have over energy consumption

EVALUATION : ENERGY CONSUMPTION

- UrbanEye consumes 50% less energy compared to GPS
- The on-server version consumes same energy as Dejavu
- The off-server version
 consumes 86% less energy
 than GPS

CONCLUSION

- This is the first work which gives proper data structure and framework for localization under uncertainty
- The **PTA** efficiently utilizes the in uncertainty
- Compared to a deployed system Google Maps and research system Dejavu, UrbanEye fairs quite well

ACKNOWLEDGEMENT

- Special Thanks to
 - Information Technology Research Academy, India
 - Xerox Research Centre India
 - ACM India IARCS

THANK YOU!

UrbanEye: http://www.cnergres.iitkgp.ac.in/urbaneye/

Follow the work of Complex Network Research Group (CNeRG), IIT KGP at: Web: <u>http://www.cnergres.iitkgp.ac.in/</u> Facebook: <u>https://web.facebook.com/iitkgpcnerg</u> Twitter: <u>https://www.twitter.com/cnerg</u>